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A new neutral beam deposition code has been developed which is capable of calculating 
fast ion deposition profiles including the orbit correction. The code incorporates any injection 
geometry and a non-circular cross-section plasma with a variable elongation and an outward 
shift of the magnetic flux surface. Typical CPU time on a KL DEC-10 computer is l&20 s 
and S-10 s with and without the orbit correction, respectively. This is shorter by an order of 
magnitude than that of other codes, e.g., Monte Carlo beam deposition codes. The power 
deposition profile calculated by this code is in good agreement with that calculated by the 
Monte Carlo code which was developed to calculate the complete behaviors of the fast ions in 
circular plasmas. 

1. INTRODUCTION 

Many experimental studies to investigate beta limits have recently been carried out 
in Tokamak devices [ 141. In these experiments, a high-power neutral beam is 
injected into the plasma in order to achieve higher beta values. Recent experimental 
results in the ISX-B [ 1 ] and PDX [2] h s ow a decrease in energy confinement time 
for higher injected beam power. The cause of this decrease is not yet well known. In 
order to study beam-heated plasmas effectively, it is of primary importance to 
analyse the data from hundreds of plasma discharges and carefully investigate the 
parameter dependence of transport phenomena. It is therefore desirable to have a fast 
data analysis code subject to reasonable simplification. Since one of the most time- 
consuming elements of the data analysis code for beam-heated plasmas is the 
calculation of the beam deposition profile for the plasma, it is particularly important 
to develop a fast beam deposition code in order to analyse the data efficiently. 

Several computer codes have been developed to calculate the beam deposition 
profile for a plasma. Rome [5] developed a computer code for tangential injection 
into circular plasmas; Fowler [6] developed a Monte Carlo beam deposition code, 
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NFREYA, which was designed for non-circular plasmas. Both codes take the shift of 
the fast ion drift orbits in the plasma from the magnetic flux surfaces into account. 
The Monte Carlo beam deposition code is capable of calculating the beam deposition 
profile for a beam injected with any injection geometry into a plasma which has any 
configuration of the magnetic flux surfaces. However, from a practical standpoint it is 
difficult to use the Monte Carlo code as a part of the data analysis code since the 
Monte Carlo code consumes a great deal of CPU time in order to reduce the 
statistical error. 

Our object here is to develop a fast computer code (less than 1 min KL DEC- 
10 CPU time per case) which is capable of calculating a beam deposition profile with 
an orbit correction for a neutral beam injected with any injection geometry into a 
non-circular Tokamak plasma with displaced magnetic flux surfaces. 

Section 2 describes the assumptions and equations employed in the code; Section 3 
presents a comparison of the calculated results using the present code with those 
derived from the Monte Carlo code [ 121 which was developed to calculate the 
complete behaviors of the fast ions in circular plasmas and discusses the orbit effect 
on the beam deposition profile. The summary is presented in Section 4. 

2. CALCULATIONAL METHOD 

2.1. Assumptions 

The beam deposition code described in this paper has been developed primarily to 
analyse the data from neutral-beam-heated discharges in the Doublet III Tokamak (a 
device capable of generating non-circular dee-shaped plasmas with elongations of up 
to 1.8 [7]). Figure I(a) shows the magnetic flux contours of a Doublet III plasma 
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FIG. 1. (a) Magnetic flux contours calculated by the free boundary equilibrium code [S]. (b) 
Approximated magnetic flux contours employed in the code. 
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calculated by the free boundary equilibrium code [8]. The outer flux contours are 
dee-shaped but the inner flux contours (I < $z) (the region in which the transport 
phenomenon is important because the hot plasma is contained in this region) have 
elliptical shapes with variable elongations. The flux contours are not all concentric 
but shift outward and this shift becomes larger in high beta plasmas. These features 
are common to non-circular dee-shaped plasmas. Because of these considerations, in 
order to simplify the calculation the magnetic flux contours are approximated as 
ellipses with variable elongations and outward shifts both of which depend on the 
plasma minor radius. 

In general, the beam deposition profile can be simply calculated with a so-called 
pencil beam approximation. However, with this approximation the beam deposition 
profile diverges near the point at which the injected beam is tangent to the magnetic 
flux surface. In the present code, the so-called diffused beam which has a finite beam 
radius is considered to eliminate the divergence and the beam cross-sectional shape is 
approximated as ellipse. 

This approximation is quite reasonable since almost all the neutral beams extracted 
from several types of ion source have a circular or elliptical cross sectional shape. 
The beam current density is constant for each concentric ellipse and depends only on 
the radius of this ellipse. The neutral beam usually has a divergence angle of l-2’. In 
this code, the beam divergence is neglected, i.e., the parallel beam is considered 
because of the expansion of the beam radius in the plasma due to the beam 
divergence being negligibly small in comparison to the beam radius itself. 

Drift orbits of fast ions created in the plasma by ionization and charge exchange 
are divided into two groups, transit orbit and banana orbit. In general, the fast ions 
distribute non-uniformly in both the poloidal and toroidal direction, especially when 
the fast ions move along the banana orbits. However, from the viewpoint of energy 
transfer to the plasma from the fast ions, it is a reasonable approximation that the 
fast ions distribute uniformly in both the poloidal and toroidal direction and that their 
birth rates depend only on the minor radius of the magnetic flux contour since the 
plasma ions and electrons move uniformly on the magnetic flux surface in which the 
fast ions transfer their energy to the plasma through classical coulomb collisions. 

The shift of the fast ion drift orbits from the magnetic flux contour is -2-5 cm in 
Doublet III for the transit orbits; the banana width is -5-10 cm for banana orbits 
under typical experimental conditions (plasma current: 300 kA-1 MA, beam energy: 
W-80 keV). These shifts and widths although not very large cannot be neglected, 
especially in the case of a near-perpendicular injection as in Doublet III, since a large 
number of fast ions move along the banana orbits for the near-perpendicular 
injection. Therefore, in the present code this orbit effect is taken into account in the 
following manner. A fast ion created on a magnetic flux surface moves along a 
particular orbit crossing the magnetic flux surfaces. The fast ion deposition profile is 
then weighted by the fraction of bounce time which the fast ion spends in each 
differential volume between the magnetic flux surfaces. 

The fast ions usually diffuse across the magnetic flux surfaces due to pitch angle 
scattering during the slowing down process. However, this spatial diffusion of fast 
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ions can be neglected for all practical purposes since the characteristic time of pitch 
angle scattering is long compared to the typical slowing-down time in many cases of 
neutral-beam-heating experiments. The calculated results given by the Monte Carlo 
code [ 121 show that this diffusion can be neglected. (See Section 3.2.) 

2.2. Equations 

2.2.1. Magnetic flux contours 

Each magnetic flux contour calculated by the free boundary equilibrium code is 
approximated as an ellipse which is shown in Fig. l(b), and then expressed by the 
following equations in cylindrical coordinates (R, 4, z). 

(R - R,(X))2 + z* = p*, 

R = R,(X) + p cos 8, (1) 

z = p sin e. 

R,,(X) is expressed by 

R,(X) = R, + d(X). (2) 

The relation between p and B is given by 

P2 
7 ( 

COS* e + 
1 

K(X)Z 
sin* e = 1, 

1 

where r is the minor radius of the magnetic flux contour in the midplane, X = r/a, a 
is the plasma minor radius (i.e., the minor radius of the outermost magnetic flux 
contour), K(X) is the elongation, R, is the plasma major radius (i.e., the major radius 
of the outermost magnetic flux contour), d(X) is the outward shift of the magnetic 
flux contour and R,(X) is the major radius of the magnetic flux contour. K(X) and 
d(X) are approximated with the appropriate functions so that they fit the calculated 
ones by the equilibrium code. 

K(X) = c,, + c,,x* + C,,X4, (4) 

-= Cdl + &*X2 + c,,x4, a (5) 

where Ck,, Ck2, C,, , C,, , Cd2 and C,, are constants. 
The toroidal plasma volume, V(r), enclosed by an magnetic flux surface is 

expressed by 

V(r) = nr’tc(X) . 2nR,(X). (6) 
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Therefore, the differential volume, dV(r), between the magnetic flux surfaces is 
expressed by 

dV(r)=2n%dr 2h.g.Ro(X)+X~Ro(X)+~.~(X)~). 
( 

(7) 

2.2.2. Fast ion deposition profile 

In this section, the fast ion deposition profile without the orbit correction is 
described. The fast ions created on any magnetic flux surface distribute uniformly on 
this surface. In this case, the fast ion birth rate at a minor radius in the midplane of T, 
due to a small beam element injected into the plasma, is calculated by dividing the 
number of fast ions created between a magnetic flux surface of the minor radius, r, 
and the minor radius, r - dr, with the differential volume between these surfaces (see 
Fig. 2). That is, the fast ion birth rate due to a small beam element, d&(r), is given 
by 

1 
dig(r) = - 

Wr) 
ads~(R,+pcos8)d#je, e ql J@, 4 4) . dl. n,(r) . d,(r), (8) 

where n,(r) and 6&r) are the electron density and the total ionization cross section at 
the minor radius of r, respectively, e, is the normal vector of the magnetic flux 
surface at the point @, 0, 4) and e, is the unit vector in the direction of injection. 
Here, J@, 19,$) is the neutral beam current density at the point @, 0, $) on the 
magnetic flux surface and is expressed by 

MAGNETIC SURFACE 

r-dr r 

FIG. 2. Description of calculational model for the fast ion birth rate due to a small beam element. 
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where J&I, 0,d) is the neutral beam current density on the outermost magnetic flux 
surface before attenuating, I,@, 8,#) is the distance from an intersecting point of the 
beam element and the (x, z) plane to the point at which the beam element crosses the 
outermost magnetic flux surface and I@, 8, 4) is the distance from the intersecting 
point to the point @, 19,d). 

The total fast ion birth rate due to the total neutral beam injected into the plasma 
is given by integrating Eq. (8) inside the region on the magnetic flux surface defined 
as the intersectional area of the neutral beam and the magnetic flux surface. 

%a-> a,(r) 
dRo 2KR,+X$R,+XK- 
dX 

*h 
X 

li 

Q&v ds(R, + p cos 0) d# 1 e, . e, j d J@, 0, 4) 
dr 

I-I 

(10) 
00 b,(B) 

dl 

The intersectional area and the limits of the integral in Eq. (10) are shown in 
Fig. 3. 

Figure 4 shows the injection geometry in a Cartesian coordinate system anchored 
in the center of the torus. The point (x0, 0, zJ defined on the (x, z) plane is the cross 
point of the beam center line and the (x, z) plane. 0, is the angle between the x axis 
and the unit vector, e,, in the direction of the injection projected on the (x, y) plane. 
8, is the angle between the unit vector, e,, and the (x, y) plane. The orbit of the beam 
element parallel to the beam center line is expressed by 

X=Xs-kOSe,cOse,, 

y = 1 cos 8, sin 8, , (11) 

.7=zS-lsin8,, 

z 

TERSECTIONAL AREA 
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X 

FIG. 3. Intersectional area of the neutral beam and a magnetic flux surface. 
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FIG. 4. Injection geometry and notation of variables. 

where 2 is the distance from the intersecting point (x,, 0, zS) of the beam element and 
the (x, z) plane to a point (x, y, z). The relation between the minor radius, t, and the 
distance, I, is obtained from Eqs. (3) and (11) using x = (R, + p cos 0) cos 4 and y = 
(R, + p cos 0) sin 4. 

r2 = & (2, - 1 sin 82)2 

dr/dl in Eq. (10) is then obtained by differentiating Eq. (12) by r, 

p2sin2 0 drc pcose dR, -.- 
!c3.u *dx+ a dX 

= p cos 8 cos B,(sin 4 sin 8, - cos 4 cos e,) - -$ p sin 8 sin 8,. 

The unit vector, e,, and the normal vector e,, are expressed by 

e, = (-20s 6, cos 8,) co9 6, sin 6,, -sin S,), 

e, = 
I ( 
- zSin6r+pcosB 

i 
COS$~, 

- 
( 

3P zsinB+PcosO)sinC$, ($cosB--psin8) :I. 

(12) 

(13) 

(141 

(15) 

Thus, 

(16) 
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where 

H= 
( 
$sine+pcosB c0s~c0se2c0se, 

1 

8P - g sin e + p cos e sin $ cos 8, sin 8, - $c0se-psine sine,. (17) 

Finally, the following equation is obtained by substituting Eq. (16) in Eq. (10): 

riB(r) = 2a2r(2tcR, + X(dtc/dX) R, + Xc(dR,/dX)) 

de d#(R,, i- p COS 0) IH[ J@, f$#) 
/ dr/dll ’ (18) 

2.2.3. Intersection of the neutral beam and the magnetic jlux surface 

The cross-sectional shape of the neutral beam is approximated as an ellipse whose 
axis is parallel to the (x, y) plane. In this case, the boundary surface of the neutral 
beam is given by the following equations with notations in Fig. 4: 

(x - x0)* + yz + (2 - z(J* = l2 + p;, 

1= -(x - x0) cos 0, cos 8, + y cos 8, sin 8, - (Z - ZJ sin 8, , 
2 PB 

7 cos*y+isin*y = 1, (19) aB 
p,cosy=(x-x,)sine,+(y-yy,)cOse,, 

x,-xo=-ic0s02c0se1, 
y, = 1 cos 8, sin 8, , 

where aB is the length of the ellipse axis parallel to the (x, y) plane, rcB is the ellip- 
ticity and pB is the radius of the ellipse. 

The intersection is calculated by substituting Eq. (3), x = (R, + p cos t9) cos 4 and 
y = (R, + p cos 0) sin d in Eq. (19). The fast ion birth rate on any magnetic flux 
surface is then given by integrating Eq. (18) inside the obtained intersectional area. 

2.2.4. Ionization cross section 

The neutral atoms injected into the plasma are ionized through electron impact 
ionization, ion impact ionization and charge exchange. The electron impact ionization 
cross section, the hydrogenic ion impact ionization cross section and the charge 
exchange cross section with hydrogenic ions are well known and calculated from 
formulas given by Riviere [9]. The impurity ion impact ionization cross section and 
charge exchange cross section with the impurity ions in the plasma are described as 
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biz = Z1.4(aii + uCX) by Olson [lo]. Here, uiZ is the total electron loss cross section 
with the impurity ions, Z is the charge number of the impurity ions, uii is the proton 
impact ionization cross section, and u,, is the charge exchange cross section with 
protons. In order to calculate the total electron loss cross section with the impurity 
ions, it is necessary to know the charge numbers and density of all kinds of impurity 
ions. However, at the present time, it is impossible in practice to have this infor- 
mation. Therefore, in the present code we assume that there is one species of impurity 
ion whose charge number is Z and that the effective charge number, Zeff, is spatially 
uniform. Under these assumptions, the total electron loss cross section is expressed 
by 

5tI(r) = 6iie(r) + t8iitr) + gcx(r)){f + t1 -.f)“‘” ’ Czeff -f)“‘” 13 (20) 

where 6t(r) is the total electron loss cross section averaged over the Maxwellian 
distribution, 6+Jr) is the electron impact ionization cross section averaged over the 
Maxwellian distribution of electrons at the local electron temperature, fiii(r) and 
6Cx(r) are the proton impact ionization cross section and charge exchange cross 
section with protons averaged over the Maxwellian distribution of ions at the local 
ion temperature, respectively, and n,(r) is the plasma ion density. In the present code, 
the temperature and density profile in the plasma can be approximated with the 
appropriate functions (see Eqs. (33) and (34)). 

2.2.5. Orbit correction 

In the cylindrical coordinate system shown in Fig. l(b), the drift orbits of the fast 
ions are calculated according to the following equation under the assumption that the 
magnetic field is static and axisymmetric and that the toroidal magnetic field is larger 
than the poloidal magnetic field [ 111. 

2Anl 
WSe v,, R = const, 

where w is the poloidal magnetic field flux and m, e, and v,, are the mass, the charge, 
and the guiding center velocity of the fast ions parallel to the axisymmetric magnetic 
field, respectively. 

Equation (22) is independent of the #-direction because of the assumption of 
axisymmetry. Thus, the fast ion drift orbit defined by Eq. (22) represents the 
projection of the drift orbit onto the (R, z) plane. Furthermore, we may calculate the 
drift orbit on only the half-plane over the horizontal line since the plasma is 
symmetric against the horizontal line. 

The magnetic moment and the kinetic energy of the fast ion are conserved under 
the assumptions of a small variation in the magnetic field within the area of the 
Larmor radius and in the gyration time of the fast ions as well as less collisions and 
the lack of an electric field in the plasma. 
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Equation (22) can be rewritten by using these assumptions. 

Il/(R, z) + (2 ~(R(R-R*)}1’2=K(R,z,R*). (23) 

where R* = R,v~,/v2, R, is the major radius where the fast ion is created, vlb is the 
fast ion velocity perpendicular to the magnetic field at the birth point of the fast ion, 
o is the fast ion velocity, and a = 1 or -1 when v,, is in the same or opposite 
direction as the plasma current. K(R, z, R*) in Eq. (23) is the constant determined by 
the fast ion birth point and the related pitch angle. y/(R, z), required to solve Eq. (23), 
is given by calculating the free boundary equilibrium code [8] for each plasma 
discharge and is approximated as an appropriate polynomial function which depends 
only on the minor radius of the magnetic flux contour which is approximated as the 
ellipse given by Eq. (3) according to the equilibrium calculation. That is, 

w(X) = c,, + c,,x2 + c,,x3 + c,,x4, (24) 

where CpO, Cp2, Cp3, and Cp4 are constants. The magnetic flux contour is rewritten in 
the cylindrical coordinate system shown in Fig. l(b) by 

(R -R,(X))‘= r2 ---& (25) 

This approximation described above for the poloidal magnetic flux simplifies the 
calculation of the fast ion drift orbits and consequently reduces the CPU time for the 
calculation of the orbit correction significantly. 

The fast ion drift orbit is calculated by solving Eq. (23) using Eqs. (24) and (25). 
The fast ion deposition profile with the orbit correction is obtained by weighting each 
fast ion birth rate by the fraction of bounce time which the fast ion spends in the 
related differential volume between the magnetic flux surfaces. The fast ion birth rate 
at the minor radius of ri, Ati,( which originates from the fast ion created on the 
magnetic flux surface of the minor radius, rj, is expressed by 

where dri,(rj) given by Eq. (8) is the fast ion birth rate due to a small beam element, 
dV(r,) and dV(rj) are differential volumes at the minor radii of ri and rj, respectively, 
and Wij(pj, tIj, #j, ri, rj) is the fraction of bounce time which the fast ions created at 
the point @,, O,, 4,) on the magnetic flux surface of the minor radius, rj, spend in the 
unit length of the minor radius at the minor radius of ri. The total fast ion birth rate 
with the orbit correction at the minor radius of ri is obtained by integrating Eq. (26) 
with Bj, #j, and rj using Eqs. (7) and (8). 
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1 
~B(ri) = 2n2ri(2K(Xi)R,(Xi) + Xi(dlc(Xi)/dX)R,(Xi) + Xi ’ Ic(Xi)(dR,(Xi)/dX)) 

(27) 

X {n,(rj>~~(rj)(R, + Pj COS dj) IHjl * J@j, ej, #j) * W&j, ej, #j, rir rj)). 

Fast ions which are able to travel across the magnetic flux surface at the minor 
radius, ri, are created inside the area surrounded by 6,(rj) - l?,(r,) and #,(O,) - #,(c!Ii) 
on the magnetic flux surface of the minor radius, rj, and also created between the 
minor radius, r,(ri) and r2(ri). 

The bounce time, 7, which the fast ion spends in the differential volume between 
the magnetic flux surfaces of the minor radius, r and r’, is given by 

7 = 
I 

r’ (dR* + dz*)“* 
r (vi + vy* ’ (28) 

where (dR* + dz’)“* is an element of arc length in the drift orbit on the (R, z) plane, 
vR and u, are the R-component and the z-component of the fast ion velocity, respec- 
tively, expressed by the following equations under the assumption that the toroidal 
magnetic field is larger than the poloidal magnetic field. 

v &f!L 1 aw 
P .--+&(2v2-4: 

B 2nR 8R 

where v,, = v(1 - R*/R)l’*. 
The fraction of the bounce time, W,, is given by 

(30) 

where 7((pj, 6,, #j, rj) is the bounce time with which the fast ion created at the point 
(pi, O,, dj) on the magnetic flux surface of the minor radius, rj, travels along the entire 
length of its orbit and T@j, 19,, ~j, ri, rj) is the bounce time which the same fast ion 
spends in the unit length of the minor radius at the minor radius of ri. 

3. TYPICAL CALCULATIONAL RESULTS 

The fast ion deposition profile is obtained by integrating Eq. (18) or Eq. (27) 
numerically. The integral of Eq. (18) without the orbit correction is performed by the 
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following procedure. First, an intersectional area of the neutral beam and a magnetic 
flux surface is divided into meshes in both the poloidal and toroidal direction and an 
orbit for a small beam element which passes each mesh point is calculated. Second, 
the neutral beam current density at each mesh point is calculated by using Eq. (9) 
and the fast ion birth rate due to the small beam element is calculated. Finally, the 
integral is performed by summing the fast ion birth rates at all mesh points inside the 
intersectional area. In this step, Gaussian integration is employed in order to reduce 
the computational time. 

The integral of Eq. (27) with the orbit correction is performed using almost the 
same procedure described above except for the following step. The fast ion birth rate 
at each mesh point on a single magnetic flux surface is divided among the magnetic 
flux surfaces which the fast ions created at each mesh point move across in 
proportion to the fraction of bounce time, Wij, defined by Eq. (31); the same 
calculation is performed for all mesh points on all magnetic flux surfaces. The total 
fast ion birth rate on a single magnetic flux surface is given by summing the divided 
birth rates calculated on the related magnetic flux surfaces. 

The typical CPU time for calculating the fast ion deposition profile in Doublet III 
within a computational error of 10% over the entire range of the minor radius is 
10-20 s with the orbit correction and 5-10 s without the orbit correction on the 
KL DEC-10 computer. This time is shorter by an order of magnitude than that of a 
Monte Carlo beam deposition code. In order to evaluate the computational model 
and check the program, we use the parameter A defined by 

(“ri (r)dV 
A=;“_, , 

in out 
(32) 

where N,, is the neutral particle injection rate into the plasma and N,,, is the 
outgoing neutral particle rate out of the plasma without suffering any electron loss 
collisions in the plasma. In principle, A in Eq. (32) must be 1 for all fast ion species. 
In the calculation described in this section, A is in the range of 1.01-0.96. 

3.1. Fast Ion Deposition Profile 

Figure 5 shows the total fast ion deposition profile in Doublet III. Parameters 
employed in this calculation are: plasma current, Z, = 530 kA, line-averaged electron 
density, &, = 5 x lOi me3, central electron temperature, T,(O) = 1.2 keV, effective 
charge number, Z,, = 1.5, typical charge number of impurity ions in the plasma, 
Z = 8, central elongation, K(O) = 1.15, outward shift of the magnetic axis, d(O)/a = 
5.8 x 10W2, neutral beam energy = 80 keV, ion species = 6 :3 : 1 in ion current 
extracted from an ion source, injection angle, 0, = 14’ and 8, = 4.3”, and the neutral 
beam cross-section dimensions, a, = 0.15 m and rcB = 0.56. The neutral beam 
intensity distribution is approximated as the Gaussian distribution. The temperature 
and density profiles of the plasma are assumed as 
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FIG. 5. Normalized fast ion birth rate. 0 : without the orbit correction, 0 : with the orbit correction 
in coinjection, A: with the orbit correction in counterinjection. 

nj(r)=(nj(0)-nj(a))]l- (6)'! +nj(a)Y (33) 

Tj(r) = (Tj(0) - q(U)) ] 1 - ($) * 1 + Tj(U)* (34) 

In Fig. 5, the total fast ion deposition profiles normalized by the averaged fast ion 
birth rate with and without the orbit correction for both coinjection and counterin- 
jection are shown. In the case of coinjection, the fast ion birth rate with the orbit 
correction increases to a maximum of 30% at the inner plasma region and decreases 
slightly at the outer plasma region compared to the birth rate derived without the 
orbit correction. The major reason for this phenomenon is that the fast ions created in 
the outer part of the torus tend to travel inward from the magnetic flux surface on 
which the fast ions are created and that near the plasma edge the fest ions are lost to 
the walls due to so-called orbit loss. In the case of counterinjection, the fast ion birth 
rate with the orbit correction decreases significantly around the central region of the 
plasma because the fast ions tend to travel outward. 

3.2. Comparison with the Monte Carlo Code 

In order to evaluate the model for the orbit correction employed in the present 
code and estimate the spatial diffusion of the fast ions during the slowing down due 
to pitch angle scattering, we have compared the fast ion and the power deposition 
profiles calculated by the present code with those calculated by the Monte Carlo code 
[ 121 which was developed to calculate the complete behaviors of the fast ions in 
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0.5 

‘/a 
FIG. 6. Comparison of the fast ion birth rate calculated by the present code with that given by the 

Monte Carlo code [ 121. 0: the present code, x : the Monte Carlo code. 

circular plasmas including the pitch angle scattering, orbit loss, and charge exchange 
loss with reionization. In this comparison, the charge exchange process is excluded 
because the present code is not capable of calculating the behaviors related to the 
charge exchange process. 

Figure 6 shows the fast ion deposition profile which is the starting point for 
calculating the power deposition profile. The fast ion deposition profiles calculated by 
both codes are in good agreement except in the region r/a < 0.1. This discrepancy in 
the central region is caused by the divergence due to the pencil beam approximation 
which is used in the Monte Carlo code. 

Figure 7 shows the power deposition profile to the plasma ions normalized by the 
average energy transport rate. In the present code, the power transported to the ions 
from the fast ions is calculated by means of an analytical solution of the 
Fokker-Planck equation [ 131. The power deposition profile with the orbit correction 
calculated by the present code is in good agreement with that calculated by the 
Monte Carlo code except for the central region. This agreement shows that the 
assumption of neglecting the spatial diffusion of the fast ions due to pitch angle 
scattering during the slowing down is quite reasonable and also proves that the orbit 
correction is taken into account in a reasonable manner in the present code. 

3.3. Orbit Eflect 

In order to estimate the orbit effect on the power deposition, the volume integrated 
power, PzC, transported to the plasma inside the minor radius of r/a < 0.5 is 
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‘fa 

FIG. 7. Comparison of power deposition profile calculated by the present code with that given by 
the Monte Carlo code. 0 : the present code, x : the Monte Carlo code. 

calculated in both cases with the orbit correction in coinjection and without. Figure 8 
shows the parameter dependence of Ptes on the plasma current, Z,, for each fast ion 
species. All other parameters are those in Fig. 5. The vertical axis of Fig. 8 represents 
the variation rate of P$i, (P, - P,JP,,, where P, and P, are Ptc with and without 
the orbit correction, respectively. The total Pit with the orbit correction increases 
10% - 15% and the variation rate, (P, - PJ/P,,, decreases with the plasma current. 
This result is reasonable because the shift of the fast ion, drift orbit and the banana 
width depend on the poloidal Larmor radius of the fast ion. However, Fig. 8 also 
shows that (P, - P,)/P, increases with the decrease of fast ion energy in the same 
plasma current although the poloidal Larmor radius increases with the fast ion 
energy. The reason for this tendency is that the deposition profile of the low energy 
fast ions of which a relatively large amount are created near the plasma edge region 
is affected strongly by the orbit effect since in coinjection fast ions tend to travel 
inward as described in Section 3.1. Figure 9 illustrates the electron density depen- 
dence of (P, - P,)/P, at I,, = 700 kA. All other parameters are those in Fig. 8. 
(P, - P,)/P, increases with the electron density due to the fact that at high density a 
relatively large amount of fast ions are created near the plasma edge region. Conse- 
quently, at high electron density and low plasma current, the variation of Pit due to 
the orbit effect increases up to 20%-30% in Doublet III. Thus, using these plasma 
parameters, it is important in the transport analysis of beam heated plasmas to take 
the orbit effect into account. 
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PLASMA CURRENT (MA) 

FIG. 8. Plasma current dependence of the variation rate of P$,: due to the orbit effect. P$,: is the 
power transported from the fast ions to the plasma inside the minor radius of r/a < 0.5. 
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FIG. 9. Line-averaged electron density dependence of the variation rate of P’j6:. 
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4. SUMMARY 

A new neutral beam deposition code has been developed which has the following 
capabilities: 

(1) The new code is capable of calculating the fast ion deposition profile 
injected into non-circular plasmas with a variable elongation and an outward shift of 
the magnetic flux surface. 

(2) A neutral beam injection with an arbitrary injection geometry can be con- 
sidered. 

(3) The orbit correction for a fast ion deposition profile is considered by 
weighting each fast ion birth rate by the fraction of bounce time which the fast ion 
spends in the related differential volume between the magnetic flux surfaces. 

(4) Typical CPU time on the KL DEC-IO computer for calculation of a fast 
ion deposition profile in Doublet III is 10-20 s with the orbit correction and 5-10 s 
without the orbit correction. This time is shorter by an order of magnitude than that 
of a Monte Carlo beam deposition code. 

The computational results in Doublet III show: 

(1) The fast ion birth rate with the orbit correction increases in coinjection and 
decreases in counterinjection in the area of the plasma center compared to the fast 
ion birth rate without the orbit correction. 

(2) In the case of coinjection, the volume integrated power transported to the 
plasma inside the minor radius of a/2 increases 10%20% due to the orbit effect. 

(3) This increment increases with the decrease in plasma current and also 
increases when a relatively large amount of fast ions are created near the plasma edge 
region since fast ions tend to travel toward the central region of the plasma. Thus, the 
increment increases with electron density and decreases with beam energy. 

(4) The power deposition profile calculated by the present code is in good 
agreement with that calculated by the Monte Carlo code which is able to describe the 
complete behavior of fast ions in the plasma. This agreement shows that the orbit 
correction is taken into account in a reasonable manner in the new code. 

The code can easily be modified to allow calculation of the fast ion deposition 
profile for plasmas having triangularity of the magnetic flux contour. 
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